#	<u>Question</u>						
1	Let <i>a</i> represent a non-zero rational number and let <i>b</i> represent an irrational number.	PARCC 2A					
N O	Which expression could represent a rational number?						
С	A. − <i>b</i>						
C A L C	B. a + b						
	C. ab						
	D. b^2						
2	Which points are on the graph of the equation $-3x + 6y + 5 = -7$?						
	Select all that apply.						
N	A. (−3, 6)						
0	B. (-2,0)						
C	C. (0, -2)						
C A L C	D. (6, −3)						
С	E. (8, 2)						
3 N	The cost to manufacture x pairs of sunglasses can be represented by a function, $C(x)$. If it costs \$398 to manufacture 4 pairs of sunglasses, which of the following is true?						
0	Select the correct equation.						
C	A. $C(4) = 99.50$						
C A L C	B. $C(398) = 4$						
С	C. $C(4) = 398$						
	D. $C(99.50) = 1$						

4	Let $ x + y = c$ where, c is a real number.					
	Determine the number of points that would be on the graph of the equation for each given case:					
	Case 1: <i>c</i> < 0					
	Case 2: $c = 0$					
	Case 3: <i>c</i> > 0					
	Justify your answers.					
5	The formula for finding the perimeter, P , of a rectangle with length I and width I is given.					
	P = 2I + 2w					
	Which formula shows how the length of a rectangle can be determined from the perimeter and the width?					
	A. $I = \frac{P}{2} - 2w$					
	B. $I = \frac{P-2w}{2}$					
	B. $I = \frac{P - 2w}{2}$ C. $I = \frac{P}{2} + w$ D. $I = \frac{P - 2}{2w}$					
	D. $I = \frac{P-2}{2w}$					
6	A high school is having a talent contest and will give different prizes for the best 5 acts in the show. First place wins the most money, and each place after that wins \$50 less than the previous place.	PARCC 22				
	Let x represent the value of the first place prize. Let y represent the total amount of prize money awarded.					
	Part A					
	Create a model that can be used to determine the total amount of prize money based on the value of the first place prize.					
	Write your final answer in slope-intercept form.					
	Part B					
	The talent contest has a total of \$1,000 in prize money. What is the amount of money for each of the five prizes? Show your work.					

7	Jerome is constructing a table of values that satisfies the definition of a function.					
	Input -13 20 0 -4 11 -1 17 Output -15 -11 -9 -2 -1 5 5 13					
	Which number(s) can be placed in the empty cell so that the table of values satisfies the definition of a function?					
	Select all that apply.					
	A. -5					
	B. -1					
	c. 0					
	D. 2					
	E. 11					
	F. 17					
8	Which points are on the same line that passes through $(-4, -3)$, $(20, 15)$, and $(48, 36)$?					
	Select all that apply.					
	A. (-8, -6)					
	B. (-2, -1)					
	C. (0, 0)					
	D. (4, 3)					
	E. (6, 8)					

9

Which graph represents the equation 5y - 3x = -15?

A.

В.

C.

D.

PARCC 33

Which of the following graphs shows **all** of the ordered pairs in the solution set of this linear equation?

Α.

В.

C.

D.

11

Caroline knows the height and the required volume of a cone-shaped vase she's designing. Which formula can she use to determine the radius of the vase?

 $V = \frac{1}{3}\pi r^2 h$

A.
$$r = \sqrt{\frac{V}{3\pi h}}$$

B.
$$r = \sqrt{\frac{3V}{\pi h}}$$

$$\mathbf{C.} \quad r = \frac{\sqrt{3V}}{\pi h}$$

D.
$$r = \pm \sqrt{\frac{3V}{\pi h}}$$

PARCC 41

12	Two boys, Shawn and Curtis, went for a walk. Shawn began walking 20 seconds earlier than Curtis.	NC 6
N O	 Shawn walked at a speed of 5 feet per second. Curtis walked at a speed of 6 feet per second. 	
C A	For how many seconds had Shawn been walking at the moment when the two boys had walked exactly the same distance?	
C		
13	The math club sells candy bars and drinks during football games.	NC 7
N O	 60 candy bars and 110 drinks will sell for \$265. 120 candy bars and 90 drinks will sell for \$270. 	
CA	How much does each candy bar sell for?	
L C	(Note: Express the answer in dollars.cents.)	
14 NOCALC	What is the smallest of 3 consecutive positive integers if the product of the smaller two integers is 5 less than 5 times the largest integer?	NC 8
15 N O C A	Two times Antonio's age plus three times Sarah's age equals 34. Sarah's age is also five times Antonio's age. How old is Sarah?	NC 10
C		NO 44
16 N	Katie and Jennifer are playing a game.	NC 14
0	 Katie and Jennifer each started with 100 points. At the end of each turn, Katie's points doubled. 	
C	 At the end of each turn, Jennifer's points increased by 200. 	
A L C	At the start of which turn will Katie first have more points than Jennifer?	
С		

17	Energy and mass are related by the formula $E = mc^2$.					
	• <i>m</i> is the mass of the object.					
	• c is the speed of light.					
	Which equation finds m , given E and c ?					
	$A \qquad m = E - c^2$					
	$B m = Ec^2$					
	$C m = \frac{c^2}{E}$					
	$D m = \frac{E}{c^2}$					
18	Lucy and Barbara began saving money the same week. The table below shows the models for the amount of money Lucy and Barbara had saved after x weeks.					
	Lucy's Savings $f(x) = 10x + 5$					
	Barbara's Savings $g(x) = 7.5x + 25$					
	After how many weeks will Lucy and Barbara have the same amount of money saved?					
	A 1.1 weeks					
	B 1.7 weeks					
	C 8 weeks					
	D 12 weeks					

19	The table below shows the cost of a pizza based on the number of toppings.				NC 39	
			Number of Toppings (n)	Cost (C)		
			1	\$12		
			2	\$13.50		
			3	\$15		
			4	\$16.50		
	Which function represents the cost of a pizza with <i>n</i> toppings?					
	A $C(n) = 12 + 1.5(n - 1)$					
	B $C(n) = 1.5n + 12$					
	$C \qquad C(n) = 12 + n$					
	D C(n) = 12n					
20	There were originally 4 trees in an orchard. Each year the owner planted the same number of trees. In the 29th year, there were 178 trees in the orchard. Which function, $t(n)$, can be used to determine the number of trees in the orchard in any year, n ?					NC 42
	A $t(n) = \frac{178}{29}n + 4$					
	B $t(n) = \frac{178}{29}n - 4$					
	С	t(n) = 6n + 4				
	D $t(n) = 29n - 4$					