\begin{tabular}{|c|c|c|}
\hline \# \& Question \& \\
\hline \begin{tabular}{l}
1 \\
N \\
0 \\
C \\
A \\
L \\
C
\end{tabular} \& \begin{tabular}{l}
Let a represent a non-zero rational number and let \(b\) represent an irrational number. \\
Which expression could represent a rational number? \\
A. \(-b\) \\
B. \(a+b\) \\
C. \(a b\) \\
D. \(b^{2}\)
\end{tabular} \& PARCC 2 A \\
\hline 2
\(N\)
O

C
A
L

C \& | Which points are on the graph of the equation $-3 x+6 y+5=-7$? Select all that apply. |
| :--- |
| A. $(-3,6)$ |
| B. $(-2,0)$ |
| C. $(0,-2)$ |
| D. $(6,-3)$ |
| E. $(8,2)$ | \& PARCC 5 \\

\hline 3
N
O

C
A
L

C \& | The cost to manufacture x pairs of sunglasses can be represented by a function, $C(x)$. If it costs $\$ 398$ to manufacture 4 pairs of sunglasses, which of the following is true? |
| :--- |
| Select the correct equation. |
| A. $\quad C(4)=99.50$ |
| B. $C(398)=4$ |
| C. $C(4)=398$ |
| D. $C(99.50)=1$ | \& PARCC 8 \\

\hline
\end{tabular}

4	Let $\|x\|+\|y\|=c$ where, c is a real number. Determine the number of points that would be on the graph of the equation for each given case: Case 1: $c<0$ Case 2: $c=0$ Case 3: c>0 Justify your answers.	PARCC 17
5	The formula for finding the perimeter, P, of a rectangle with length / and width w is given. $P=2 l+2 w$ Which formula shows how the length of a rectangle can be determined from the perimeter and the width? A. $I=\frac{P}{2}-2 w$ B. $\quad I=\frac{P-2 w}{2}$ C. $\quad I=\frac{P}{2}+w$ D. $\quad I=\frac{P-2}{2 w}$	PARCC 18
6	A high school is having a talent contest and will give different prizes for the best 5 acts in the show. First place wins the most money, and each place after that wins $\$ 50$ less than the previous place. Let x represent the value of the first place prize. Let y represent the total amount of prize money awarded. Part A Create a model that can be used to determine the total amount of prize money based on the value of the first place prize. Write your final answer in slope-intercept form. Part B The talent contest has a total of $\$ 1,000$ in prize money. What is the amount of money for each of the five prizes? Show your work.	PARCC 22

7	Jerome is constructing a table of values that satisfies the definition of a function. Which number(s) can be placed in the empty cell so that the table of values satisfies the definition of a function? Select all that apply. A. -5 B. -1 C. 0 D. 2 E. 11 F. 17	PARCC 23
8	Which points are on the same line that passes through $(-4,-3),(20,15)$, and $(48,36)$? Select all that apply. A. $(-8,-6)$ B. $(-2,-1)$ C. $(0,0)$ D. $(4,3)$ E. $(6,8)$	PARCC 27A

The ordered pairs $(20,-29.5),(21,-31)$, and $(22,-32.5)$ are points on the graph of a linear equation.

Which of the following graphs shows all of the ordered pairs in the solution set of this linear equation?
A.

C.

B.

D.

Caroline knows the height and the required volume of a cone-shaped vase she's designing. Which formula can she use to determine the radius of the vase?
A. $r=\sqrt{\frac{V}{3 \pi h}}$
B. $r=\sqrt{\frac{3 V}{\pi h}}$
C. $r=\frac{\sqrt{3 V}}{\pi h}$

$$
V=\frac{1}{3} \pi r^{2} h
$$

12 N 0 C A L	Two boys, Shawn and Curtis, went for a walk. Shawn began walking 20 seconds earlier than Curtis. - Shawn walked at a speed of 5 feet per second. - Curtis walked at a speed of 6 feet per second. For how many seconds had Shawn been walking at the moment when the two boys had walked exactly the same distance?	NC 6
13 N 0 C A L C	The math club sells candy bars and drinks during football games. - 60 candy bars and 110 drinks will sell for $\$ 265$. - 120 candy bars and 90 drinks will sell for $\$ 270$. How much does each candy bar sell for? (Note: Express the answer in dollars.cents.)	NC7
14 N O C A L C	What is the smallest of 3 consecutive positive integers if the product of the smaller two integers is 5 less than 5 times the largest integer?	NC8
15 N O C A L C	Two times Antonio's age plus three times Sarah's age equals 34. Sarah's age is also five times Antonio's age. How old is Sarah?	NC 10
$\begin{aligned} & 16 \\ & \mathrm{~N} \\ & \mathrm{O} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~L} \\ & \mathrm{C} \end{aligned}$	Katie and Jennifer are playing a game. - Katie and Jennifer each started with 100 points. - At the end of each turn, Katie's points doubled. - At the end of each turn, Jennifer's points increased by 200. At the start of which turn will Katie first have more points than Jennifer?	NC 14

17	Energy and mass are related by the formula $E=m c^{2}$. - $\quad m$ is the mass of the object. - $\quad c$ is the speed of light. Which equation finds m, given E and c ? A $\quad m=E-c^{2}$ B $\quad m=E c^{2}$ C $\quad m=\frac{c^{2}}{E}$ D $\quad m=\frac{E}{c^{2}}$	NC 18
18	Lucy and Barbara began saving money the same week. The table below shows the models for the amount of money Lucy and Barbara had saved after x weeks. After how many weeks will Lucy and Barbara have the same amount of money saved? A 1.1 weeks B 1.7 weeks C 8 weeks D 12 weeks	NC 36

19	The table below shows the cost of a pizza based on the number of toppings. Which function represents the cost of a pizza with n toppings? A $\quad C(n)=12+1.5(n-1)$ B $\quad C(n)=1.5 n+12$ C $\quad C(n)=12+n$ D $\quad C(n)=12 n$	NC 39
20	There were originally 4 trees in an orchard. Each year the owner planted the same number of trees. In the 29th year, there were 178 trees in the orchard. Which function, $t(n)$, can be used to determine the number of trees in the orchard in any year, n ? A $\quad t(n)=\frac{178}{29} n+4$ B $\quad t(n)=\frac{178}{29} n-4$ C $\quad t(n)=6 n+4$ D $\quad t(n)=29 n-4$	NC 42

